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Summary. For deciphering the secret of the conventional H€uuckel’s (4nþ 2)-rule and also for extending

it to polycyclic systems the aromaticity index, DZ, is introduced based on the graph-theoretical

molecular orbital method, which has been developed by the present author. All the information either

stabilizing or destabilizing the �-electronic system of a given graph G is contained in the characteristic

polynomial, PG(x), obtained by expanding the secular determinant of HMO theory. Instead of this

conventional procedure the present author succeeded in obtaining the general expression of PG(x) in

terms of the non-adjacent number, p(G, k), for G, defined for the topological index, ZG. By extending

this idea DZ is defined by taking into account all the contributions not only from the constituting rings

but also from the possible combinations of disjoint rings in G. By using DZ mathematical origin of the

H€uuckel’s rule was clarified and expanded to the ‘‘extended H€uuckel’s rule’’ for polycyclic conjugated

systems. Applications to bicyclic and polycyclic networks are demonstrated. Discussion on the aro-

maticity of fullerenes and nanotubes is presented.

Keywords. Aromaticity index; Graph theory; H€uuckel molecular orbital; Nonbenzenoid aromatic

hydrocarbon; Topological index.

Introduction

How do chemists understand the nature of the chemical bond? Chemists who are
engaged not only in research but also in education always seek several working
hypotheses for understanding and explaining the plausibility of the structures and
stability of specific molecules. Examples of those working hypotheses and theories
are pairing of odd electrons to form a covalent bond, octet theory by Lewis and
Langmuir [1, 2], diagrammatic method of molecular orbital theory [3–5], H€uuckel’s
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rule [3], etc. Several of those working hypotheses are grounded on firm theoretical
and experimental studies of atoms and molecules, while many of them may have
been called just empirically derived formalisms such as the old ‘‘organic electron
theory’’ proposed by Robinson and Ingold [6, 7], the rigorous proof of which has
never been publicized until recently [8]. Admitting that they are just expedient
tools or tips among the closed society of chemists, nowadays it is impossible to
draw a borderline within which chemical thinking and jargons are meaningful.

With quite a formal manipulation of structural formulas involving electron dots
chemists can realize, not theoretically but sensuously, the meaning of the following
reaction formula.

Originally this formalism has been proposed even without the proper understand-
ing of the dual nature of electron unveiled by the theoretical and experimental
progress of quantum mechanics in and after the 1920s. However, since Heitler,
London, and Sugiura [9, 10] clarified the physical meaning of the covalent bond in
a H2 molecule formed by ‘‘a pair of unpaired electrons’’ of two H atoms, this
diagrammatic recipe was deemed to be qualified also in other pair of atoms of
the same species but only in a qualitative sense. It is to be noted here that since the
electron spin does not appear explicitly in their formalism, physically important
concept of the electron spin is skipped over from the resonance theory which the
majority of chemists are using.

Then by the aid of the vague notion of ‘‘octet’’ one can understand why formal
triple, double, single, and zero bonds are formed in N2, O2, F2, and Ne2, respec-
tively. Failure of forming a quartet bond in C2 may be ascribed to exceedingly high
steric strain in the valence electrons of the C atoms. Actually this manipulation of
chemical formulas with dots is a good conventional tool for realizing some char-
acteristics of a series of homopolar diatomic molecules, as long as electron spin is
not considered. However, from this formal valence bond method, or resonance
theory, one cannot explain the triplet ground state of O2 molecule. This deadlock
can easily be resolved by the Hund rule [11] using the diagram of the molecular
orbitals formed between a pair of atoms of the same kind. Regardless of the nature
of electron spin this empirical rule has been playing an efficient pedagogical role
for chemists to realize the importance of electron spin.

The instability of He2 and Ne2 can be ascribed to the ‘‘exchange repulsion’’
between a pair of closed shells. Further, this can be applied to the instability of Be2

due to the exchange repulsion between a pair of ‘‘pseudo-closed shells’’ of 2s
electrons. Of course, more quantitative information in terms of wavefunction
and energy is needed for settling this argument at the level of quantum theorists.

How about the situation in the case of unfamiliar Li2, whose spectroscopic data is
actually available? Although MO theory had gained an advantage over VB method
in explaining the electronic structure of homopolar diatomic molecules, without
detailed knowledge of the wavefunctions one cannot predict or explain why lithium
atoms tend to form metallic crystal rather than to form Li2 molecules [12].

If one extends this line of reasoning how to understand the relative stability of
very popular heteropolar diatomic molecules to a certain degree of accuracy, one
again is forced to come to a much higher deadlock. It is hopeless to explain the
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electronic structure (e.g., bond length, bond multiplicity, polarity, etc.) of the typi-
cal molecules as CO and NO without recourse to the results of ab initio molecular
orbital calculations [13].

However, the interest of the majority of chemists is not focused on the detailed
structure of these small molecules but on larger ones. From the view point of
organic chemistry numerous challenging targets can be found in cyclic and acyclic
conjugated hydrocarbon molecules, together with their derivatives. Among them
benzenoid hydrocarbon molecules supplied a number of interesting problems both
to organic and theoretical chemists [14–16]. Relative stabilities among their iso-
mers were explained just by counting the number of Kekulé structures. However,
this approach was beginning to break down when applied to heteroatomic systems,
and with the rapid progress in computers and programming the VB approach was
gradually overwhelmed by various versions of MO methods [17–19].

It should be noted here that good interplay between theoretical and experimen-
tal studies promoted a tremendous progress in the field of nonbenzenoid aromatic
hydrocarbon chemistry [20, 21], where the most powerful guiding principle was
the H€uuckel’s rule. Actually relative stabilities among typical nonbenzenoid hydro-
carbon molecules with a few rings of different size can be roughly explained by
this rule and also supported by HMO calculations. However, even for relatively
small systems it is usually rather difficult to predict correctly the stability of a given
nonbenzenoid hydrocarbon molecule without any MO calculation.

Until today no single na€��ve method has ever won the fame of the highest
popularity for predicting the stability of these molecules.

On the other hand, graph-theoretical molecular orbital theory which has been
developed by the group of mathematical chemists succeeded in clarifying the
mathematical structure between the solution of the secular determinant and the
topology of a given hydrocarbon molecule. The present author defined the aroma-
ticity index using his ‘‘topological index’’ and derived the ‘‘Extended H€uuckel’s
Rule’’ which can predict and explain the �-electronic stability of small polycyclic
hydrocarbon molecules. Aihara has proposed ‘‘topological resonance energy’’ and
discussed the aromatic character of a number of conjugated systems including
nonbenzenoids. Since he uses the solutions of the matching polynomial, MG(x),
which is defined in terms of the non-adjacent number, p(G, k), whose sum gives the
present author’s Z-index.

The purpose of this paper is to demonstrate how aromatic stability or instability
can be predicted by back-of-envelop calculation for a number of condensed poly-
cyclic nonbenzenoid (including benzenoid) hydrocarbon molecules.

Kekulé Structure and Algebraic Structure Count

Resonance between the pair of two Kekulé structures (Fig. 1a) of benzene stabilizes
to a large extent relative to any other acyclic 6-�-electron system. Actually this
statement is supported by sophisticated quantum-chemical calculations. However,
discussion using spin algebra tells us that a pair of two Kekulé structures for 4n-�-
electron systems cannot be mixed with each other to give resonance stabilization.
Thus one cannot formally apply the resonance scheme of Fig. 1a to 4n-�-electron
systems, e.g., cyclobutadiene and cyclooctatetraene, as in Figs. 1b and 1c.
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However, this difficulty has already been resolved by Dewar and Longuet-
Higgins [22] who defined a parity to each Kekulé structure and showed that the
algebraic sum of all the Kekulé structures can predict the stability of conjugated �-
electronic systems. This algebraic sum is now called algebraic structure count
(ASC) [23].

The relative signs of a pair of resonance structures are the same, when they are
mutually interchanged by rotating an odd number of double bonds as in the case of
benzene, while the signs become opposite for the interchange of an even number of
double bonds as in the cases of cyclobutadiene and cyclooctatetraene (see the þ
and � signs in Fig. 1; see also Fig. 9). ASC is defined as the absolute value of the
sum of the signs of all the Kekulé structures for a given conjugated hydrocarbon
molecule. Thus ASC of benzene is 2 and those of the two antiaromatic 4n-�-
electron systems are zero.

By modifying in this way resonance theory can be formally used as a working
hypothesis still compatible with the HMO theory proposed by H€uuckel [3]. It is
strange to consider the fact that this useful concept of ASC is almost ignored by
modern organic chemists, although quite an empirical formalism of the organic
electron theory by Robinson [6] and Ingold [7] proposed before the birth of quan-
tum mechanics is still used as a powerful guiding principle.

Since the essence of the H€uuckel theory is well known, only a few remarks
related to it will be mentioned here. He showed that (4nþ 2)-membered cyclic
hydrocarbon molecules get extraordinary high �-electronic stability relative to the
acyclic counterparts, while the reverse is true for cyclic 4n-membered systems. He
has treated mainly monocyclic conjugated systems, and the conclusion he has drawn
is based on the numerical solutions, though a little analytically, of the secular
determinant automatically derived from the �-electronic systems according to
his recipe. Thus the H€uuckel’s rule is not guaranteed to be applied to any polycyclic
system and the origin of the difference in stability between 4n- and (4nþ 2)-�-
systems has not been clarified by him.

If we are concerned only with benzenoid aromatic hydrocarbons, all the Kekulé
structures are shown to have the same sign and the number, K, of the Kekulé

Fig. 1. Signed Kekulé structures and algebraic structure count of benzene, cyclobutadiene, and

cyclooctatetraene
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structures, which is equal to ASC, has been shown to be a good index for the
stability of molecules. Further, Clar [24] introduced the concept of aromatic sextet
represented by a circle in a hexagon for predicting the stability of polycyclic
aromatic hydrocarbon molecules. Later mathematical foundation of his theory
was given by the group of the present author [25].

Topological Index and Characteristic Quantities of a Graph

Consider the carbon atom skeleton of a given hydrocarbon molecule and represent
it as a graph G composed of vertices (C atoms) and edges (CC bonds). Benzene is
represented by a hexagon, whose algebraic expression is the adjacency matrix, A,
with such element aij that is unity if vertices i and j are adjacent (or forming a CC
bond) and zero otherwise. By using A and the unit matrix E (eii is 1 and 0 other-
wise) the characteristic polynomial, PG(x), of graph G with N vertices is defined by
Eq. (1) which is also derived by expanding the secular determinant, D(x), of H€uuckel
molecular orbitals (Eq. (2)) by putting "¼�þ x�.

PGðxÞ ¼ ð�1ÞNdetðA� xEÞ; ð1Þ

DðxÞ ¼

�� " � 0 � � �
� �� " � � � �
0 � �� " � � �
� � � � � � � � � � � �

��������

��������
ð2Þ

For example, PG(x) of benzene is obtained to be x6� 6x4þ 9x2� 4.
Then with this x-expression the problem is reduced to get the sum of the upper

half of the solution of PG(x)¼ 0, yielding the total �-electronic energy, E� as shown
by Eq. (3), for a graph with an even N.

E� ¼ 2
X½N=2�

k¼1

xk; ð3Þ

For benzene E� is obtained to be 2(1þ 1þ 2)¼ 8 as is well known. It has been
shown that the conventional HMO method can be reduced to a great extent by
using the graph-theoretical technique [8].

First define the non-adjacent number [26], p(G, k), as the number of ways for
choosing k disjoint edges from G, with p(G, 0) being unity for any graph. Then the
Z-index (originally coined as ‘‘topological index’’ by the present author [27]) is
defined as the sum of all the p(G, k)s for G (Eq. (4)) where m is the maximum
number of k¼ [N=2] for G with N vertices.

ZG ¼
Xm
k¼0

pðG; kÞ: ð4Þ

Figure 2 illustrates how to obtain the p(G, k) and Z values by taking the
hexagonal graph as an example. Note that p(G,m) is the number of Kekulé
structures, or perfect matching number for the cases with an even number of N.
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By using p(G, k)s the matching polynomial [28], acyclic polynomial [29], or
reference polynomial [30], MG(x), was proposed by several groups to be defined by
Eq. (5).

MGðxÞ ¼
Xm
k¼0

ð�1ÞkpðG; kÞ xN�2k: ð5Þ

The Z-indices for several series of graphs are found to be related to important series
of numbers. Namely, the Z values of alkanes (or alkenes) or path graphs, {SN},
form the family of the Fibonacci numbers (FN¼ 1, 1, 2, 3, 5, etc., see Table 1),
while those of cyclic alkanes (or alkenes) or monocyclic graphs, {CN}, are Lucas
numbers (LN¼ 2, 1, 3, 4, 7, etc., see Table 2). Although it is not contained in
Table 1, p(G, 0) and ZG of the vacant graph, denoted by �, with no vertex and
edge are both defined as unity.

Both series of the ZG numbers in Tables 1 and 2 are characterized by a common
recursion relation (Eq. (6)).

fN ¼ fN�1 þ fN�2 ð f ¼ F and LÞ: ð6Þ

Fig. 2. Counting p(G, k)s and ZG for hexagonal graph

Table 1. p(G, k) numbers and Z-index of path graphs

N G¼ SN p(G, k) ZG¼FN

k¼ 0 1 2 3

1 o 1 1

2 o–o 1 1 2

3 o–o–o 1 2 3

4 o–o–o–o 1 3 1 5

5 o–o–o–o–o 1 4 3 8

6 o–o–o–o–o–o 1 5 6 1 13

By rotating this table counter clockwise by 45� the Pascal’s triangle appears
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However, the relation between PG(x) and MG(x) is different in the cases of the two
kinds of graphs, trees (Table 1) and non-trees (Table 2). Namely, for a tree graph
PG(x) can easily be obtained just from the counting of p(G, k) numbers without
decomposing the determinant as has been shown by the present author (Eq. (7))
[26].

PGðxÞ ¼
Xm
k¼0

ð�1ÞkpðG; kÞ xN�2k ðG2 treeÞ: ð7Þ

Then from Eqs. (5) and (7) one gets Eq. (8).

PGðxÞ ¼ MGðxÞ ðG2 treeÞ ð8Þ
It was also found that there is a one-to-one correspondence between the p(G, k)

numbers of {SN} and the elements of the Pascal’s triangle as symbolically
expressed by Eq. (9), the lower members of which are already given in Table 1.
For later discussion let us denote the PG(x) of a path graph SN also as SN(x).
Namely, we have Eq. (10).

pðSN ; kÞ ¼
N � k

k

� �
ð9Þ

SNðxÞ ¼
X½N=2�

k¼0

ð�1Þk N � k

k

� �
xN�2k; ð10Þ

On the other hand, for non-tree graphs complicated correction terms should
be added to MG(x) to get PG(x). However, for monocyclic graphs, {CN}, PG(x)
can be obtained just by subtracting 2 from MG(x) as deduced from Table 2
(Eq. (11)).

PGðxÞ ¼ MGðxÞ � 2 ðG2monocyclic graphÞ ð11Þ
This is the secret of the conventional H€uuckel’s rule. That is, by extending Table 2

down to higher members it is easily deduced that for 4n-membered rings the
constant term of the PG(x) is always zero (¼2� 2), while for (4nþ 2)-membered
rings the last term becomes to be �4 (¼�2� 2). Then the former group would

Table 2. MG(x), ZG, and PG(x) of monocyclic graphs

N MG(x)b ZG ¼ LN
c PG(x)

2a x2 � 2 3 x2 � 4

3 x3 � 3x 4 x3 � 3x� 2

4 x4 � 4x2 þ 2 7 x4 � 4x2

5 x5 � 5x3 þ 5x 11 x5 � 5x3 þ 5x� 2

6 x6 � 6x4 þ 9x2 � 2 18 x6 � 6x4 þ 9x2 � 4

7 x7 � 7x5 þ 14x3 � 7x 29 x7 � 7x5 þ 14x3 � 7x� 2

8 x8 � 8x6 þ 20x4 � 16x2 þ 2 47 x8 � 8x6 þ 20x4 � 16x2

a This graph is composed of two vertices and two edges; the off-diagonal elements a12¼ a21¼ 2;
b the absolute values of the coefficients are the p(G, k)s; c Lucas number; L0 ¼ 2 and L1 ¼ 1
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have doubly degenerate NBMOs, while the HOMO-LUMO gap of the latter group
would become large.

Namely, aromaticity and antiaromaticity of monocyclic graphs is caused,
respectively, by in-phase and out-of-phase combinations of the constant term of
MG(x) and the ring-correction term in Eq. (11).

It is to be noted here that this discussion, as H€uuckel did, is solely limited to the
monocyclic graphs, and he derived his (4nþ 2)-rule just from the calculated results
of the distribution of the eigenvalues of these graphs but gave no indication of the
cause of the results.

In this paper we are going to show how these correction terms arise and work to
the stability of �-electronic structure of hydrocarbon molecules containing a ring or
rings, and how we arrive at the extended H€uuckel’s rule [31].

Before going into the main part of this theory the important recursion relations
as Eq. (6) for other characteristic quantities will be explained here (see Fig. 3).
Recall that the p(G, k) number is the number of ways for choosing k disjoint edges
from graph G. This number is the sum of the two sets of counting, the one includ-
ing a given edge l and the other excluding l. The former number can be obtained by
choosing k� 1 edges from such a subgraph of G that is obtained by deleting edge l
together with all the edges incident to l. Let us denote this subgraph as G�l. The
latter number is the contribution from graph G� l, which is obtained just by
deleting edge l from G but leaving its terminal vertices. Then we have the follow-
ing recursion formula for p(G, k) as given by Eq. (12).

pðG; kÞ ¼ pðG � l; kÞ þ pðG�l; k � 1Þ: ð12Þ
By accumulating Eq. (12) for a given graph one can obtain the recursion for-

mula of ZG as shown by Eq. (13).

ZG ¼ ZG�l þ ZG�l: ð13Þ
Similarly the recursion formula for the matching polynomial is obtained (Eq. (14)).

MGðxÞ ¼ MG�lðxÞ � MG�lðxÞ ð14Þ
This idea comes from the ‘‘inclusion-exclusion principle’’ [32] which is one of the
main principles frequently used in the enumeration problems in discrete mathe-
matics, such as graph theory and combinatorics.

Fig. 3. Recursion relations for p(G, k), ZG, and MG(x)
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Direct application of Fig. 3 to a monocyclic graph, CN, whose matching poly-
nomial is expressed by CN(x), yields Eq. (15).

CNðxÞ ¼ SNðxÞ � SN�2ðxÞ: ð15Þ
Further, it is to be mentioned here that the recursion formula for PG(x) of polycylic
graphs becomes rapidly complicated with increase of the number of rings [33, 34].

Characteristic Polynomial of Polycyclic Graphs

For discussing the effect of more than two rings in a conjugated system one needs
to have the expression of PG(x) in terms of the p(G, k) numbers, which was
obtained by the present author in 1972 [35]. Namely, the characteristic polynomial
of a polycyclic graph G is expressed in terms of the p(G, k) numbers of G and its
subgraphs as shown by Eq. (16).

PGðxÞ ¼
Xm
k¼0

ð�1ÞkpðG; kÞ xN�2k

þ ð�2Þ
XRing

r

Xmr

k¼0

ð�1ÞkþnrpðG�Rr; kÞ xN�nr�2k

þ ð�2Þ2
XRing

r> s

Xmrs

k¼0

ð�1ÞkþnrþnspðG�Rr�Rs; kÞ xN�nr�ns�2k

þ � � �

¼ MGðxÞ � 2
XRing

r

MG�Rr
ðxÞ þ 4

XRing

r> s

MG�Rr�Rs
ðxÞ � � � � ð16Þ

The first term is the matching polynomial MG(x) with no ring contribution, and the
second summation term counts the contribution from the isolated rings, Rrs, where
G�Rr is the subgraph of G obtained by deleting ring Rr together with all the edges
incident to Rr. The third term is the contribution from the pairs of disjoint rings, Rr

and Rs, composed, respectively, of nr and ns vertices, and so on. Note that PG(x) of a
polycyclic graph is expressed by the set of the matching polynomials of G and the
subgraphs obtained by deleting a ring or set of disjoint rings from G. It is easily seen
that the Eqs. (7), (8), and (11) are contained in Eq. (16), which is the basis for the
extended H€uuckel’s rule of aromaticity applied to polycyclic conjugated systems.

Sachs has proposed an elegant formulation for generating the coefficients of
PG(x) by using the ‘‘Sachs graph’’ [36, 37]. However, practically it is rather diffi-
cult to apply his theorem to a graph with at about ten vertices, because no recursive
relation is available for handling many Sachs graphs.

Modified Z Index and Extended Hückel’s Rule

Coulson and Longuet-Higgins have developed beautiful perturbation theory in
HMO without solving PG(x) but by taking the contour integrals of the functions
derived from PG(x) over the complex plane around the poles at the eigenvalues
[38]. However, they did not scrutinize the contribution of each component of a
graph. The essence of our graph-theoretical molecular orbital theory (GTMO)
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[8, 31] has filled this gap by defining the topological bond order [39, 40] and
modified Z-index [31] supported by Eq. (16). In these studies it was clarified that
the contribution from the terms of odd powers in PG(x) is almost wiped out by
taking the integral along the imaginary axis [31].

Then the modified Z index, ~ZZG, was proposed to be defined by Eq. (17) and the
aromaticity index, DZG, was defined as the difference between ~ZZG and ZG (Eq. (18)).

~ZZG ¼
Xm
k¼0

ð�1Þka2k; ð17Þ

DZG ¼ ~ZZG � ZG ð18Þ
The index ~ZZG extracts the essential contribution to the �-electronic energy from
PG(x), while ZG sums up the topological contribution other than ring formation
from MG(x). Then positive and negative values of DZG, respectively, indicate aro-
matic and anti-aromatic character of the �-electronic conjugated system G.

Aihara defines his topological resonance energy as the difference between
the eigenvalue sums of PG(x) and MG(x), and has performed extensive study on the
aromaticity of a variety of conjugated hydrocarbon molecules and ions [30]. The
numerical values of his analysis is naturally in parallel with what is obtained by
the aromaticity index, as his theory is also based on the p(G, k) numbers.

By taking into account the meaning of Eq. (16) the contributions from the com-
ponent rings of graph G can be divided into several categories as follows (Eq. (19)).
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This equation shows two important factors governing the �-electron stability of
a ring network, namely, the value of the Z-index of subgraph G�R and the sign
given to each term. The first two lines give the well-known H€uuckel’s rule. Namely,
a (4nþ 2)-membered ring stabilizes, while a (4n)-membered ring destabilizes the
�-electronic conjugated system. The third line tells us that a pair of disjoint rings
with a total of 4n vertices stabilizes, while the fourth line shows a destabilization
contribution by a pair of two disjoint rings with a total of 4nþ 2 vertices.

The selection rule for the combined contribution from odd number of rings
goes back to the case of a single ring, while for the case with even number of
disjoint rings the selection rule is the same as the case with a pair of disjoint rings.

We have seen in the above discussion that the value of DZG (i) for tree graphs is
always zero, while (ii) for (4nþ 2)-membered monocyclic graphs þ2, and (iii) for
(4n)-membered monocyclic graphs �2. The definition of Eq. (17) was deliberately
chosen so, because for polycyclic graphs with more than two (4n)-membered rings
there often arises a case in which the sign of PG(x) does not alternate.

Bicyclic Networks

Consider the relative energies of naphthalene and two other bicyclic 10-� isomers
as shown in Fig. 4, whose calculated �-electronic properties are also given.
Although the hydrocarbon 48 composed of a tetragon and an octagon is the least
stable, it has the largest Z-index and Kekulé number. However, ~ZZG index and DZ
show good correlation with E�. Further, algebraic structure count (ASC) reflects

Fig. 4. Calculation of DZ values for three isomers of naphthalene
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correctly the order of stability. Note that even if nonbenzenoid hydrocarbons are
treated in this study, the absolute values of the constant term of PG(x), which are
not shown here, were found to be equal to the square of ASC in parallel with the �-
electronic stability.

In this case the DZ value is contributed either from the first or second line of
Eq. (19) as depicted in Fig. 4. For example, delete a hexagon together with the two
incident edges from naphthalene 66, and a butadiene skeleton S4 is left, whose Z-
index is 5. Then according to the first line in Eq. (19) one gets þ10 for each
hexagon. By deleting the peripheral 10-membered ring, which is to be counted
as a component ring, a vacant graph S0 is left, whose Z-index is unity, and one gets
þ2. The DZ value of 66 is thus 22. As the azulene skeleton 57 receives only þ2 for
DZ from the peripheral ring, its �-electronic character is slightly aromatic. On the
other hand, the network 48 becomes highly anti-aromatic by receiving negative
contributions from the component tetragon and octagon.

Next consider a group of bicyclic graphs with an even N constructed by joining
a pair of rings with an edge of a unit length as the biphenyl network 6–6 (See
Fig. 5). In this case the third and fourth lines of Eq. (19) need to be considered.

Comparison of DZ values should be made among the isomers with the same
number of vertices. However, the aromaticity of biphenyl 6–6 is prominent by
receiving positive contributions both from the component hexagons and the pair
of disjoined hexagons as implied in the first and third lines of Eq. (19). It is
important to notice that in larger polycyclic aromatic hydrocarbons toward graphite
each hexagon contributes toward stabilization of the system not only by itself but
also by forming sets with as many disjoint hexagons as possible.

It is instructive to see how the 10-� 4–6 network becomes anti-aromatic. For
compounds in which 4n- and (4nþ 2)-rings are competing, the contribution from
the smaller ring exceeds that from the larger ring, because of the difference in the
size of G�R.

Fig. 5. Aromaticity indices of analogues of biphenyl
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In Fig. 5 there are four networks composed of only odd-membered rings,
among which 3–5 and 5–7 are predicted to be a little aromatic and actually have
been synthesized, while 3–7 and 5–5 are a little anti-aromatic and have not been
synthesized yet. This difference comes from the ‘‘reverse-(4nþ 2)-rule’’ in the
third and fourth lines of Eq. (19) for the pair of disjoint rings.

Tricyclic Networks

Let us consider the relative energies of twenty-one isomers of anthracene 6662
with three catacondensed rings and 14-�-electrons as shown in Fig. 6, where the
dashed lines divide the isomers into five subgroups, A to E, within each of which
the set of the constituting ring components are common. The first three digits
denote the size and ordering of the constituting rings, while the last digit distin-
guishes the positional isomers of the systems with the same order and same size of
the constituting rings. In Table 3 the DZ values and all the contributions from the
component rings of the isomers are shown and compared with E�, K, and ASC.
They are arranged in the descending order of DZ, and are rather well correlated
with E� as seen in Fig. 7. It can be deduced from these results that the relative �-
electronic stability of these hydrocarbons are roughly determined by the constitu-
ent rings in the order of the groups, A>B>C>(D,E). Among all the isomers only
8642 is triplet in the ground state and behaves as an outlyer from the group of plots
of all other isomers in Fig. 7.

Although the ring contributions to the DZ values for each isomer can be traced
from Table 3, a detailed breakdown is illustrated in Fig. 8 with 6842 chosen as an
example, where the dashed rings and bold-lined graphs, respectively, represent the
Rs to be deleted and resultant G�Rs contributing to stabilization or destabilization
of the �-electronic system. By following this figure one can realize why 6842 is

Fig. 6. Twentyone isomers of 3-ring and 14-� catacondensed hydrocarbons
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highly anti-aromatic as the result of competition between the 4n- and (4nþ 2)-
membered rings in the network. The first, second, and third columns in Fig. 8
correspond, respectively, to the first, second, and fourth lines of Eq. (16). The most
crucial factor for determining the anti-aromatic character of this network is in the
difference between the effects caused by the tetragon and hexagon. The destabiliz-
ing effect by the smaller tetragon (104� 2) is much larger than the stabilizing
effect by the hexagon (40� 2). In this way one can predict and explain why and
how a given polycyclic hydrocarbon network becomes aromatic or anti-aromatic

Table 3. Ring contribution to the DZ value and other characteristic quantities of 3-ring 14-�

catacondensed hydrocarbons

No. E� DZ Ring contribution K ASC Note

6661 19.4483 256 þ256 (6�3, 10�2, 14, 6þ 6) 5 5

6662 19.3137 232 þ232 (6�3, 10�2, 14, 6þ 6) 4 4

6751 19.1086 98 þ98 (6, 10, 14) 3 3

7561 19.0949 96 þ96 (6, 10, 14) 3 3

6752 19.0837 92 þ92 (6, 10, 14) 3 3

7651 19.0377 58 þ58 (6, 14, 6þ 6) 2 2

7652 18.8942 54 þ54 (6, 14, 6þ 6) 2 2

7832 18.8317 �26 þ2 (14) 2 2

�28 (8, 3þ 7)

7833 18.6831 �30 þ2 (14) 2 2 a

�28 (8, 3þ 7)

7831 18.6890 �34 þ2 (14) 2 2 a

�36 (8, 3þ 7)

8732 18.6258 �54 þ2 (14) 3 1

�56 (8�2)

8731 18.6286 �56 þ2 (14) 3 1

�58 (8�2)

8461 18.6061 �90 þ106 (6, 10, 14) 5 1

�196 (4, 8�2, 8þ 6)

7471 18.5328 �130 þ2 (14) 2 2 a

�132 (4, 12)

6842 18.6791 �152 þ92 (6, 10, 14) 4 2

�244 (4, 8, 12, 4þ 6)

6843 18.4940 �162 þ96 (4, 10, 14) 5 1

�258 (4, 8, 12, 4þ 6)

6841 18.4858 �172 þ100 (6, 10, 14) 5 1

�272 (4, 8, 12, 4þ 6)

8642 18.0924 �206 þ58 (6, 14, 4� 8) 4 0 b,c

�264 (4, 8�2, 12)

7742 18.4128 �212 þ2 (14) 3 1

�214 (4, 12)

7741 18.3950 �228 þ2 (14) 3 1

�230 (4, 12)

8641 18.3443 �232 þ62 (6, 14, 4þ 8) 5 1

�294 (4, 8�2, 12)

a With one NBMO; b With 2-NBMOs and expected to be triplet ground state; c outlyer
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determined not only by the constituent rings but also by all the possible combina-
tions of them. To the author’s awareness there has been proposed no other simple
index to be compatible with DZ for this purpose.

Fig. 7. Correlation between DZ and E� of 3-ring and 14-� catacondensed hydrocarbon isomers

Fig. 8. Competition between the stabilizing and destabilizing effects by the component rings of

6842
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It is to be remarked on the ASC of these isomeric systems. Just by looking at
Table 3 correlation between ASC and E� does not seem to be high. However, if one
compares the results within each subgroup, correlation turns out not to be so bad.

Here assignment of the parity to each Kekulé structure to get ASC is illustrated in
Fig. 9 with 6842 taken as an example, where the number attached to a double-headed
arrow denotes the number of conjugated double bonds to be interchanged between
the pair of Kekulé structures. In this case the central Kekulé structure is transformed
to all other Kekulé structures with cyclic interchange of an even number of double
bonds, while the outer three members are transformed into each other by interchang-
ing an odd number of conjugated double bonds, and thus have the same sign.

However, it is known that for some special types of pericondensed ring systems
a sign cannot uniquely be given to each Kekulé structure, and ASC does not work at
all [37, 41]. On the contrary, the idea of the aromaticity index, DZ, can quite easily
and successfully be applied to any polycyclic conjugated hydrocarbon network to
predict and explain its aromatic or anti-aromatic character. Finally a brief discus-
sion on the aromaticity of fullerene and nanotube networks will be given.

Fullerenes, Nanotubes, and Graphite

First consider the graphite network which is composed of only hexagons. As Eq.
(19) implies, the sign of the DZ-contribution from the disjoint set of any number of
hexagons is positive accelerating enhanced aromatic character to the whole net-
work of graphite. However, there are also negative contributions arising from
certain kinds of combinations of hexagonal rings. As shown in Fig. 10 a ring
component circumscribing a group of condensed hexagons belongs either to 4n-
or (4nþ 2)-membered ring, respectively, giving negative or positive contribution to
DZ according to the first two lines in Eq. (19). The former component is character-
ized by an odd number of inner vertices, while the latter by an even number or
zero. Although it is difficult to perform rigorous analysis, enumeration for smaller
ring components reveals that the number of possible (4nþ 2)-membered rings
exceeds that of the 4n-group. Further, a pair of rings fiom the same class gives

Fig. 9. Assignment of the parity (þ;�) to each Kekulé structure of 6842 by enumerating the number

of conjugated double bonds for cyclic interchange between the pair of Kekulé structures
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positive contribution to DZ, while a pair of rings originating from different classes
negative. Similar arguments follow for the group contribution of disjoint rings of
more than two. Anyway the above analysis of the tricyclic isomers ensures that
polybenzenoid networks toward graphite gain extraordinary higher aromatic char-
acter than nonbenzenoids.

A nanotube is constructed by rolling up a graphite sheet and capping at the both
ends. According to the Euler’s theorem mathematically simplest capping at each
end is performed by inserting six pentagons in the graphite network. Just consider a
pair of pentagons in a nanotube network. Whether they are isolated from each other
or condensed to form an octagon, their contribution to DZ is negative as deduced
from the above discussion. Note that the degree of instability brought by an octa-
gon is larger than a pair of isolated pentagons. As derived from the second and
fourth lines in Eq. (19). Thus the set of twelve pentagons in any nanotube or
fullerene network diminishes the aromatic character of the parent graphite sheet
to some extent, which is strengthened as the degree of condensation of pentagons
in the network. As a consequence the soccer-ball type C60, in which all the twelve
pentagons are isolated from other pentagons, is the most stable among the 1812
isomers. Actually the DZ values of all the isomers of C60 were found to be beauti-
fully classified into several groups stepwise depending on the number of adjacent
pairs of pentagons [42].
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